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Abstract

Conservation scientists are increasingly measuring the impacts of conservation interventions by applying
quasiexperimental impact evaluation to remotely sensed panel data on land use change. However, these
applications come with new challenges. Using Monte Carlo simulations and analytical proofs, we demonstrate
that many of the panel econometric models employed for conservation impact evaluation are biased - the
significance, magnitude and even direction of estimated effects from many studies are likely incorrect. These
errors threaten to undermine the evidence base that underpins conservation policy adoption and design. We
review the methods in this burgeoning literature and develop guidance for the design of econometric models
quantifying conservation policy effectiveness.

1 Introduction

Policymakers often need to understand the causal impacts of conservation interventions. Do marine protected
areas stop unsustainable harvesting of fish? Can payments for ecosystem services encourage lasting refor-
estation? While randomized experiments are the gold standard for the identification of causal relationships
(Edwards et al. 2020; Jayachandran et al. 2017), conservation often poses questions that are prohibitively
expensive, unethical or impossible to pursue through experimentation. In such settings, a growing portfo-
lio of statistical techniques enable researchers to draw causal conclusions using observational data (Larsen,
Meng, and Kendall 2019). Increasingly, these econometric approaches to impact evaluation are being used to
disentangle the causal relationships that underpin conservation decisionmaking (Butsic, Lewis, et al. 2017;
Baylis et al. 2016; Williams, Balmford, and Wilcove 2020). These econometric methods can generate esti-
mates of an intervention’s impact by comparing observed outcomes to a statistical counterfactual of what
would have happened in the absence of an intervention (Ferraro 2009; Meyfroidt 2016; Ferraro, Sanchirico,
and Smith 2019; Ribas et al. 2020).

Importantly, these econometric methods account for the non-random assignment of interventions that often
confound identification of causal relationships in conservation. For example, a low rate of deforestation within
a remote protected area may reflect the protected area’s effectiveness, or it may be indicative of the remote
location’s poor suitability for agricultural development (Andam et al. 2008; Pfaff et al. 2009). To build
valid counterfactuals in the face of non-random selection, researchers frequently build upon spatial, panel
data to observe changes in outcomes across treated and control units after the adoption of an intervention
(Blackman 2013). When a rigorous research design is applied to panel data, observational studies can yield
conclusions that are comparable to what a researcher would discover if they were able to run a randomized
experiment (Ferraro and Miranda 2017).

One important development that has enabled the proliferation of conservation impact evaluation is the
increasing prevalence of remotely sensed datasets detailing conservation outcomes through time (Blackman
2013; Jones and Lewis 2015). For example, NASA’s Landsat archive can be used to generate consistent
information on land use spanning the entirety of the world since the 1970s (Hansen and Loveland 2012). As
a result, a scientist hoping to quantify the impacts of a land use policy adopted decades ago can assemble
data for treated and control units that span both pre- and post-implementation periods (Jain 2020).

However, many commonly used measures of land use change have structural differences from the data used
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in traditional, linear panel models. For example, deforestation is often measured using data with a similar
structure to the Global Forest Change product produced by Hansen et al. (2013). When converted to a
panel structure, these data yield binary observations detailing the first year in which each 30 by 30m pixel
was deforested. Importantly, the data do not allow for the detection of reforestation timing and, as a result,
are unable to detect repeated deforestation events in the same location. To date, insufficient attention has
been paid to how such binary, irreversible outcome data may affect the performance of standard econometric
tools.

Here, we use a combination of analytical proofs and Monte Carlo simulations to demonstrate that many econo-
metric analyses of deforestation are likely biased - significance, magnitude and even direction of estimated
effects might be incorrect. While we focus on deforestation, many of our results apply to any setting with
binary, irreversible data including mortality (e.g., Friedman and Schady 2013), technology adoption (e.g.,
Bollinger et al., n.d.), and reincarceration (e.g., Mastrobuoni and Pinotti 2015). The resulting biases arise
even when researchers follow common guidance to adopt “rigorous” research designs with valid counterfac-
tuals (Blackman 2013; Jones and Lewis 2015). Our main result shows that two-way fixed effects regressions
with pixel unit fixed effects cannot identify the desired treatment effect parameter. Papers published in
both conservation science and economics journals as recently as 2021 use this problematic specification to
recover treatment effect estimates. To help guide future impact evaluations, we identify multiple ways in
which this bias can be reduced or even eliminated. We then explore non-random selection that arises due
to irreversibility in the deforestation setting and how this feature of the data may lead to bias. Finally, we
reflect on the econometric benefits that emerge when researchers are able to match their model structure to
the relevant scale of the deforestation process.

2 Measuring avoided deforestation using panel methods

We focus on the case in which a researcher would like to quantify the impact an intervention has had on
deforestation. We assume that the intervention has clearly defined boundaries (e.g., a protected area, certified
concession, or indigenous territory), and that the researcher has access to spatially explicit observations of
forest cover and forest loss spanning the periods before and after the intervention was adopted. This general
setting describes a broad array of studies that apply panel methods to remotely sensed data (Table 1).
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Table 1: Econometric model structures used in avoided deforestation impact evaluations. All of the included
studies use data accessed as pixelated binary deforestation.

Paper Panel Method Unit of analysis Unit fixed effects level

Alix-Garcia and Gibbs 2017 TWFE binary point/pixel pixel

Alix-Garcia et al 2018 TWFE binary point/pixel pixel

Anderson et al. 2018 matched DID binary point/pixel NA

Araujo et al. 2009 TWFE using instrument state state

Arriagada et al. 2012 matched DID farm NA

Baehr et al. 2021 TWFE binary pixel/grid cell pixel

Baylis et al. 2012 DID grid cell NA

BenYishay et al. 2017 TWFE grid cell grid cell

Blackman 2015 matched unit FE model binary point/pixel county

Blackman et al. 2017 TWFE community community

Blackman et al. 2018 matched TWFE management unit management unit

Busch et al. 2015 matched TWFE grid cell grid cell

Butsic et al. 2017 TWFE binary point/pixel pixel

Carlson et al. 2018 matched TWFE plantation plantation

Carlson et al. 2018 (robustness check) Cox PH DID pixel NA

Heilmayr and Lambin 2016 matched DID property NA

Heilmayr et al. 2020 Triple DID/fixed effects binary point/pixel municipality

Herrera et al. 2019 matched regression binary point/pixel NA

Holland et al. 2017 matched TWFE landowner parcel landowner parcel

Jones and Lewis 2015 (1) matched TWFE binary point/pixel pixel

Jones and Lewis 2015 (2) matched TWFE household parcel household parcel

Jones et al. 2017 matched TWFE household household

Koch et al. 2018 matched DID municipality NA

Nolte et al. 2017 DID NA deforestation

Panlasigui et al. 2018 TWFE binary point/pixel pixel

Pfaff 1999 regression county NA

Sales et al. 2022 Cox PH DID pixel NA

Sanchez-Azofeifa et al. 2007 regression grid cells NA

Shah and Baylis 2015 DID grid cell NA

Sims and Alix-Garcia 2017 TWFE locality locality

Tabor et al. 2017 TWFE fokontany fokontany

Wendland et al. 2015 matched TWFE binary point/pixel pixel
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In each of the studies detailed in Table 1, the researcher’s goal is to measure the impact that a specific policy
had on deforestation within treated units, also known as the average treatment effect on the treated (𝐴𝑇 𝑇 ).
The 𝐴𝑇 𝑇 estimates the difference between the average deforestation rate of treated units with treatment,
and the average deforestation rate of treated units without treatment. The fundamental challenge is that,
for every treated unit, the researcher is unable to observe the value that the outcome would have taken in
the absence of treatment (Holland 1986). In our case, this means that the researcher cannot observe the
deforestation that would have occurred in treated units had they not received treatment. Figure 1 displays
this problem in the context of a simulated conservation intervention that reduced deforestation rates in
treated areas — the landscape is depicted as observed by the researcher at the end of the observation period,
including the unobservable counterfactual of what would have happened if the conservation intervention
had not been adopted. Note that in untreated areas, there is no counterfactual deforestation, since no
intervention ever took place.

Figure 1: A map of a simulated landscape depicting patterns of deforestation under an effective conservation
intervention, as well as counterfactual deforestation illustrating what would have happened in the absence
of the intervention.

2.1 Modeling the decision to deforest
We model deforestation (𝑦𝑖𝑣𝑡) as a binary choice by a landowner to clear a small plot of land 𝑖 within their
larger property 𝑣 at time 𝑡. The decision to deforest depends upon a latent variable (𝑦∗

𝑖𝑣𝑡) that represents
the returns from the plot of land in its cleared state (𝑉 𝑐𝑙𝑒𝑎𝑟𝑒𝑑

𝑖𝑣𝑡 ) relative to the returns from its forested state
(𝑉 𝑢𝑛𝑐𝑙𝑒𝑎𝑟𝑒𝑑

𝑖𝑣𝑡 ), such that:

𝑦∗
𝑖𝑣𝑡 = 𝑉 𝑐𝑙𝑒𝑎𝑟𝑒𝑑

𝑖𝑣𝑡 − 𝑉 𝑢𝑛𝑐𝑙𝑒𝑎𝑟𝑒𝑑
𝑖𝑣𝑡 (1)

𝑦𝑖𝑣𝑡 = {1 if 𝑦∗
𝑖𝑣𝑡 > 0

0 otherwise
(2)

This generic clearing rule underpins a broad class of more specific static and dynamic models that have
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been used to explore the determinants of deforestation (e.g., Pfaff 1999; Kerr et al. 2003; Pfaff and Sanchez-
Azofeifa 2004).

However, this basic model makes an assumption that the decision to deforest is reversible. In reality, a number
of characteristics of both the process of deforestation, as well as the methods used to detect deforestation in
individual plots, complicate this assumption. First, the goal of many conservation interventions is to prevent
the loss of mature forests that may take decades, if not centuries, to regrow. In such cases, deforestation
itself may be considered irreversible in human time scales, focusing the researchers’ attention upon the first
instance in which a plot is deforested. Even when deforestation of secondary forests is an object of interest,
constraints imposed by remotely sensed datasets may force empirical researchers to treat deforestation as
irreversible. Gradual processes of reforestation are inherently harder to identify than abrupt losses of forest
cover (Hansen et al. 2013). In addition, determining the precise year in which the extended process of
forest regrowth began is currently an active area of research for the remote sensing community, and often
requires many years of post-regrowth observations. As a result, commonly used deforestation datasets such
as the Global Forest Change product often only identify the first year in which a pixel was cleared (Hansen
et al. 2013). Whether desired, or due to technical limitations, the resulting inability to observe repeated
deforestation means that deforestation is, in effect, an irreversible process in most conservation impact
evaluations. In response to this irreversibility, Jones and Lewis (2015) and Alix-Garcia and Gibbs (2017)
have suggested that deforested pixels should be dropped in the periods after they are first cleared. We follow
this guidance, further modifying our binary deforestation variable:

𝑦𝑜
𝑖𝑣𝑡 =

⎧{
⎨{⎩

1 𝑦∗
𝑖𝑣𝑡 > 0 and 𝑦∗

𝑖𝑣𝜏 ≤ 0 for all 𝜏 < 𝑡
0 𝑦∗

𝑖𝑣𝑡 ≤ 0 and 𝑦∗
𝑖𝑣𝜏 ≤ 0 for all 𝜏 < 𝑡

𝑁𝐴𝑁 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3)

2.2 Estimating the 𝐴𝑇 𝑇 using difference-in-differences and two-way fixed effects esti-
mators

Two methods commonly used to estimate the 𝐴𝑇 𝑇 in conservation intervention settings with panel data
are Difference-in-Differences (DID) and Two-way Fixed Effects (TWFE) regression (Blackman (2013); Jones
and Lewis (2015)). Our parameter of interest, the 𝐴𝑇 𝑇 , is the average effect of the conservation intervention
on treated pixels. Let 𝑦𝑖𝑣𝑡(1) and 𝑦𝑖𝑣𝑡(0) denote the potential outcomes of pixel 𝑖 in property 𝑣 in time 𝑡
with and without the treatment, respectively. In addition, let 𝑡0 denote the year that the intervention was
implemented and let 𝐷𝑖 represent a dummy indicating whether pixel 𝑖 is ever treated. The 𝐴𝑇 𝑇 can now
be expressed as:

𝐴𝑇 𝑇 = 𝐸[𝑦𝑖𝑣𝑡(1) − 𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] (4)

DID and TWFE methods have become popular in part, because the researcher does not need random
assignment of treatment to generate convincing estimates of a program’s impact on avoided deforestation.
Instead, the researcher must make a common trends assumption, under which we evaluate each method.

Assumption 1: (Common trends)

𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1] = 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0]

Assumption 1 requires that pixels in treated and untreated areas would have experienced the same change in
their probability of deforestation across the two periods had no intervention ocurred. While fundamentally
untestable, ensuring that deforestation rates in the intervention area and the control area followed parallel
trajectories prior to the date of the intervention can lend credibility to this assumption (Butsic, Lewis, et al.
2017).

We also make the following stable unit treatment value assumption (SUTVA)
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Assumption 2: (SUTVA)

∀𝑑 ∈ {0, 1} ∶ if 𝐷𝑖 = 𝑑 and 𝑡 ≥ 𝑡0, then 𝑦𝑖𝑣𝑡(𝑑) = 𝑦𝑖𝑣𝑡

Assumption 2 requires that the potential outcomes for pixel 𝑖, 𝑦𝑖𝑣𝑡(1) and 𝑦𝑖𝑣𝑡(0), do not depend on the
treatment status of any other pixel. There also cannot exist unobserved versions of treatment that may
affect the potential outcomes.

Regression 1: (DID regression) Under these two assumptions, the researcher can estimate the 𝐴𝑇 𝑇 using
a traditional DID regression. Let 𝛽𝐷𝐼𝐷 denote the coefficient of the interaction between 𝐷𝑖 and an indicator
for whether the intervention has been implemented in time 𝑡, 𝟙{𝑡 ≥ 𝑡0}, in the following (population) OLS
regression:

𝑦𝑜
𝑖𝑣𝑡 = 𝛼0 + 𝛼1𝐷𝑖 + 𝛼2𝟙{𝑡 ≥ 𝑡0} + 𝛽𝐷𝐼𝐷 x 𝐷𝑖𝟙{𝑡 ≥ 𝑡0} + 𝜖𝑖𝑡 (5)

Conceptually, the DID estimator calculates the treatment effect as the difference between the differences of
the treated and untreated observations before and after treatment (Butsic, Lewis, et al. 2017).

𝛽𝐷𝐼𝐷 = 𝐸[𝑦𝑜
𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑜

𝑖𝑣𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 1] − (𝐸[𝑦𝑜
𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑜

𝑖𝑣𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 0]) (6)
(7)

When the 𝑦𝑜
𝑖𝑣𝑡s are i.i.d. and Assumptions 1 and 2 hold, it is straightforward to show that

𝛽𝐷𝐼𝐷 = 𝐴𝑇 𝑇 (8)

Often, however, the researcher wants to estimate the 𝐴𝑇 𝑇 in a setting that does not fit the two-group,
two-period case covered by the standard DID model. In such cases, TWFE regressions are frequently used
to apply DID methods to multiple groups or treatment periods. This amounts to estimating a regression
that includes unit and time fixed effects to control for unobservable confounding variables that vary across
units or through time.

Regression 2: (TWFE regression) Let 𝛽𝑇 𝑊𝐹𝐸 denote the coefficient of the interaction between 𝐷𝑖 and
𝟙{𝑡 ≥ 𝑡0} in the following (population) OLS regression:

𝑦𝑜
𝑖𝑣𝑡 = 𝛼 + 𝛽𝑇 𝑊𝐹𝐸 x 𝐷𝑖𝟙{𝑡 ≥ 𝑡0} + 𝜆𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡

Here 𝜆𝑡 and 𝛾𝑖 represent the year and pixel fixed effects, respectively.

In the case of two groups and two time periods, the TWFE regression typically yields an estimate of the
𝐴𝑇 𝑇 that is equivalent to the estimate generated by the DID model (Wooldridge 2010). With this in mind,
many researchers have used the TWFE model as a “generalized DID” that can be estimated in settings where
different units are exposed to treatment in more than two distinct time periods (Table 1). For example, a
researcher may use a TWFE regression model to examine the effectiveness of a network of protected areas
where the protected areas were created at different times, or a payment for ecosystem services (PES) program
that enrolled properties in annual cohorts.

2.2.1 Pixel level, TWFE models fail to estimate the 𝐴𝑇 𝑇
Despite widespread use of pixel level analyses of deforestation, the application of TWFE models to a binary,
irreversible process such as deforestation yields a biased estimate of the 𝐴𝑇 𝑇 . Specifically, the proof contained
in Appendix 11.1 shows that, in the two-group, two-period case, the coefficient of interest from the TWFE
model (𝛽𝑇 𝑊𝐹𝐸) estimates the post-treatment difference in outcomes (single difference), rather than the
desired 𝐴𝑇 𝑇 :

𝛽𝑇 𝑊𝐹𝐸 = 𝐴𝑇 𝑇 + 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
pre-treatment difference in deforestation rates

(9)
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Regression 2 thus forgoes the benefits that panel methods provide, and if the treated area has a different
baseline deforestation rate than the control, will generate a biased estimate of the intervention’s impact.
Many conservation interventions are specifically targeted towards locations with either low opportunity
costs for conservation or high threats of conversion. As a result, it is likely that many conservation impact
evaluations will have treatment and control units that experienced different pre-treatment deforestation rates.
It is important to note that this bias could even lead to changes in the estimated treatment effect’s sign, in
addition to errors in the effect’s magnitude and significance.

This result stems from researchers’ use of pixel fixed effects in the regression specification. By including pixel
fixed effects in TWFE regressions, researchers hope to control for local confounders, including pre-treatment
differences in the outcome. However, when following common guidance to drop pixels in the periods after
they are first deforested, these fixed effects do not behave as the researcher expects. Because the pixels that
are deforested in the first period are not observed for the entire panel, these observations go unaccounted
for in 𝛽𝑇 𝑊𝐹𝐸. Implicitly, the pre-treatment deforestation rates get assigned as 0 for both the treatment and
control groups. In Appendix 11.2, we show that ̂𝛽𝑇 𝑊𝐹𝐸 is equivalent to the coefficient from a regression
on a dataset where all pixels deforested in the pre-treatment period are simply dropped from the dataset
completely.

2.2.2 Alternative construction of 𝑦𝑜
𝑖𝑣𝑡 cannot recover the 𝐴𝑇 𝑇

Although dropping previously deforested pixels from the panel introduces bias into the TWFE estimate of
the 𝐴𝑇 𝑇 , keeping observations in the panel after initial deforestation introduces its own problems. The 𝐴𝑇 𝑇
as defined in Section 2.2 is an estimate of the impact of an intervention on the frequency of deforestation
events (i.e. the decision to clear). Keeping the deforested pixel in the panel beyond the first period in which
it was observed as deforested would incorrectly imply that it has actively been deforested in each subsequent
time period, when in fact, no new deforestation event or clearing decision has occurred. This is intuitively
problematic, because the deforestation rate in each period would be monotonically increasing by construction,
which is not necessarily the case. We show that pixel-level regression models that do not drop deforested
pixels in subsequent periods do indeed incur severe bias if used to estimate the 𝐴𝑇 𝑇 as it is defined here
(Appendix 11.3).

2.3 Estimating the 𝐴𝑇 𝑇 using survival analysis
2.3.1 Hazard rate ratios from a single survival model do not estimate the 𝐴𝑇 𝑇 under common

trends

Survival analysis has emerged as a common approach to modeling irreversible changes such as mortality,
technology adoption, or recidivism (Friedman and Schady 2013; Mastrobuoni and Pinotti 2015). Survival
models, such as the Cox Proportional Hazards model, quantify how covariates relate to changes in the length
of time that a unit remains in a sample. In the case of deforestation, survival analyses can be used to explore
how policy adoption changes the duration that treated, forested pixels survive until they are first cleared.

Despite the theoretical appeal of using survival models to study deforestation, they are still relatively uncom-
mon in conservation impact evaluation. One emerging approach introduces the intuition of a difference in
differences research design into a Cox Proportional Hazards model (e.g. Heilmayr et al. 2020; Sales, Strobl,
and Elliott 2022). Specifically, researchers estimate a Cox proportional hazards model of the following
general form:

Regression 3: (Cox DID regression) Let 𝛽𝑐𝑜𝑥𝐷𝐼𝐷 denote the coefficient of the interaction between 𝐷𝑖 and
𝟙{𝑡 ≥ 𝑡0} in the following (population) OLS regression:

ℎ(𝑡) = 𝛿0(𝑡)𝑒𝑥𝑝(𝛼0 + 𝛼1𝐷𝑖 + 𝛼2𝟙{𝑡 ≥ 𝑡0} + 𝛽𝑐𝑜𝑥𝐷𝐼𝐷 x 𝐷𝑖𝟙{𝑡 ≥ 𝑡0} + 𝜖𝑖𝑡)

, where ℎ(𝑡) is the hazard rate of deforestation, 𝑡 years into the study period; and 𝛿0(𝑡) is the baseline hazard
function.
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Multiple studies across a wide variety of settings have interpreted the resulting exponentiatated coefficient
𝑒𝑥𝑝(𝛽𝑐𝑜𝑥𝐷𝐼𝐷) as a hazard ratio that is indicative of the impact that treatment has had on the relative likeli-
hood of survival. Specifically, based on the way this hazard ratio is interpreted in multiple papers, it appears
that many researchers expect this hazard ratio to represent the ratio of the hazard rates in the treatment
group post-treatment, relative to the counterfactual in that group had treatment not occurred. This de-
sired hazard ratio measuring the relative impact of treatment on the treated (𝐻𝑅𝑇 𝑇 ) can be considered a
reframing of the traditional 𝐴𝑇 𝑇 as a ratio rather than a difference:

𝐻𝑅𝑇 𝑇 = 𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]
𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]

Both in conservation and alternative settings, researchers using Regression 3 make Assumption 1, and evalu-
ate whether it is plausible in their setting. However, Appendix 11.4 shows that 𝑒𝑥𝑝(𝛽𝑐𝑜𝑥𝐷𝐼𝐷) only identifies
the 𝐻𝑅𝑇 𝑇 under an alternative assumption:

Assumption 3: (Proportional trends)

𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]
𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1] = 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0]

𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0]

Assumption 3 requires that pixels in treated and untreated areas would have experienced the same ratio
of change in their probability of deforestation across the two periods had no intervention occurred. Note
that in general, Assumption 1 and Assumption 3 cannot simultaneously hold. This means that researchers
estimating Regression 3 under the traditional common trends assumption (Assumption 1) will not recover
the 𝐻𝑅𝑇 𝑇 , the relevant treatment effect parameter.

2.3.2 Proposing a new survival analysis-based estimator of the 𝐴𝑇 𝑇
To the best of our knowledge, no prior studies have successfully combined the Cox Proportional Hazards
model and the difference in differences research design to recover an unbiased estimate of the 𝐴𝑇 𝑇 under
the traditional common trends assumption (Assumption 1). Here we outline a new estimation approach that
first recovers an unbiased estimate of the 𝐻𝑅𝑇 𝑇 and then translates this into an estimate of the 𝐴𝑇 𝑇 that
holds under Assumption 1. First, we note that the desired 𝐻𝑅𝑇 𝑇 can be re-written as a combination of
three different hazard ratios:

𝐻𝑅1 = 𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]
𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1] (10)

𝐻𝑅2 = 𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]
𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] (11)

𝐻𝑅3 = 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0]
𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0] (12)

𝐻𝑅𝑇 𝑇 = 𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]
𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] = 1

1/𝐻𝑅1 + 1/𝐻𝑅2 − 1/(𝐻𝑅2 ∗ 𝐻𝑅3) (13)

Each of the three hazard ratios, 𝐻𝑅1, 𝐻𝑅2, and 𝐻𝑅3, can be estimated through separate Cox Proportional
Hazards models estimated on subsets of the larger dataset. Specifically:

• 𝐻𝑅1 = 𝑒𝑥𝑝(𝛼), where 𝛼 is estimated by subsetting to observations from the treated group (𝐷𝑖 = 1),
and estimating the hazard rate of deforestation at time 𝑡 as ℎ(𝑡) = 𝜆0(𝑡)𝑒𝑥𝑝(𝛼1{𝑡 ≥ 𝑡0}); and

• 𝐻𝑅2 = 𝑒𝑥𝑝(𝛽), where 𝛽 is estimated by subsetting to observations from the post-treatment period
(𝑡 ≥ 𝑡0), and estimating the hazard rate of deforestation at time 𝑡 as ℎ(𝑡) = 𝛾0(𝑡)𝑒𝑥𝑝(𝛽1{𝐷𝑖 = 1});
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• 𝐻𝑅3 = 𝑒𝑥𝑝(𝛿), where 𝛿 is estimated by subsetting to observations from the untreated group (𝐷𝑖 = 0),
and estimating the hazard rate of deforestation at time 𝑡 as ℎ(𝑡) = 𝜓0(𝑡)𝑒𝑥𝑝(𝛿1{𝑡 ≥ 𝑡0}).

Because the numerator of 𝐻𝑅𝑇 𝑇 , 𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1], can be estimated as the mean of post-treatment
deforestation rates in the treated group (denoted 𝑑𝑒𝑓𝑜𝑟𝐷𝑖∶1,𝑡≥𝑡0

), we can estimate the 𝐴𝑇 𝑇 using this esti-
mated deforestation rate and our estimate of 𝐻𝑅𝑇 𝑇 :

𝐴𝑇 𝑇 𝐶𝑜𝑥 = 𝑑𝑒𝑓𝑜𝑟𝐷𝑖∶1,𝑡≥𝑡0
−

𝑑𝑒𝑓𝑜𝑟𝐷𝑖∶1,𝑡≥𝑡0

𝐻𝑅𝑇 𝑇
(14)

We have shown that the simple extension of the traditional DID to the survival setting only recovers an easily
interpretable measure of a policy’s impact under an assumption that cannot simultaneously hold with the
traditional common trends assumption, the “Proportional Trends” assumption. In contrast, our proposed
estimator, which relies on separate estimation of relevant hazard ratios, does recover the relevant analog
of the 𝐴𝑇 𝑇 under common trends. We explore the performance of 𝐴𝑇 𝑇 𝐶𝑜𝑥 relative to the proposed OLS
regressions under various circumstances likely to arise in the deforestation setting in the next sections. If a
researcher opts to use survival analysis to recover an intervention’s impact, their choice of estimator should
depend on which trends assumption is plausible in their specific setting.

3 Monte Carlo simulations to compare alternative model performance

The rapid growth of the conservation impact evaluation literature has resulted in a diversity of model
structures that all attempt to estimate the effectiveness of conservation interventions (Table 1). To explore
the relative performance of these different models, we employ a series of Monte Carlo simulations. Specifically,
we randomly generate synthetic landscapes with known policy effectiveness and analyze the performance of
different econometric models in estimating the policy’s known impact.

3.1 Landscape configuration
We begin each Monte Carlo simulation by creating a synthetic landscape consisting of 150 rows and 150
columns of square pixels, equivalent to a raster that is 4 times larger than what is illustrated in Figure 1.
We assume that each pixel has a resolution of 30 meters, comparable to the resolution of many Landsat-
based, remote sensing analyses. The landscape thus represents an area of approximately 20.25 km2. We
then divide this landscape into a variety of spatial units, composed of either uniform aggregations of pixels
(i.e. large or small “grid cells”), or randomly spaced Thiessen polygons (i.e. “counties” or “properties”). Grid
cells are intended to represent arbitrary units of spatial aggregation imposed by the researcher. In contrast,
counties and properties are intended to represent simulated administrative units over which policy or land
use decisions are made. Table 2 summarizes the relative scale of each of these spatial units under our baseline
specifications.

Table 2: Spatial unit structure and size

Spatial unit Spatial structure Avg. number of pixels Area (hectares)

Property Thiessen polygons 100 9

County Thiessen polygons 900 81

Large grid Uniform square 900 81

Small grid Uniform square 100 9
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3.2 Data generating process
Each of our simulated landscapes consists of administrative units that are either untreated (𝐷𝑖 = 0) or are
assigned to a conservation treatment (𝐷𝑖 = 1). We observe deforestation in two, even-length periods, a
pre-treatment (𝑡 < 𝑡0) and a post-treatment (𝑡 ≥ 𝑡0) period.

We follow Equation (1) and model these binary deforestation events as a function of each pixel’s unobservable
value along the continous, latent variable (𝑦∗

𝑖𝑣𝑡) indicating the return to clearing pixel 𝑖, in property 𝑣, in
year 𝑡:

𝑦∗
𝑖𝑣𝑡 =𝑉 𝑐𝑙𝑒𝑎𝑟𝑒𝑑

𝑖𝑣𝑡 − 𝑉 𝑢𝑛𝑐𝑙𝑒𝑎𝑟𝑒𝑑
𝑖𝑣𝑡 (15)

=𝛽0 + 𝛽1𝐷𝑖 + 𝛽2,0(1 − 𝐷𝑖)1{𝑡 ≥ 𝑡0} + (𝛽2,1 + 𝛽3)𝐷𝑖1{𝑡 ≥ 𝑡0} + 𝛼𝑖 + 𝑢𝑖𝑡 + 𝜌𝑣 (16)

That is, the returns to deforestation evolve over the two time periods (1{𝑡 ≥ 𝑡0}), and differ across the
control (𝐷𝑖 = 0) and treated pixels (𝐷𝑖 = 1). In addition, we assume that the value of deforestation is influ-
enced by time-invariant random disturbances at the scale of individual pixels (𝛼𝑖 ∼ 𝑁(0, 𝜎2

𝑎)) or properties
(𝜌𝑣 ∼ 𝑁(0, 𝜎2

𝑝)), as well as time-varying, pixel-scale disturbances (𝑢𝑖𝑡 ∼ 𝑁(0, 𝜎2
𝑢)). These disturbances can

represent a variety of spatial and temporal processes including, for example, the biophysical characteristics
of a location, or the preferences of a property owner.

3.3 Assumed parameter values
For the remainder of the paper, we explore a guiding example that has been parameterized to represent
an impactful intervention in a high deforestation setting. Conservation interventions often have annual
treatment effects smaller than a 1 percentage point reduction in the annual deforestation rate (e.g. Robalino
and Pfaff 2013; Jones et al. 2017). These modest reductions in the annual deforestation rate, however, can
amount to large landscape-scale effects. For example, Alix-Garcia et al. (2018) find that environmental land
registration in Brazil’s Amazonian states of Mato Grosso and Para reduced the annual deforestation rate by
an average of 0.5 percentage points, which has resulted in an overall reduction in deforestation of 10%.

Our initial simulated landscape has the following characteristics: a pre-treatment deforestation rate of 2%
in the control area; a pre-treatment deforestation rate of 5% in the intervention area; a decrease in the defor-
estation rate of 0.5 percentage points between the first and second period in the absence of treatment; and
an average reduction of 1 percentage point in the deforestation rate in treated units due to the intervention
(𝐴𝑇 𝑇 = −0.01). We assume that 𝜎𝑢 = 0.5. Finally, we begin by assuming away time invariant pixel (𝜎𝑎 = 0)
and property-level disturbances (𝜎𝑝 = 0) but relax this assumption in Section 5. Note that Assumptions 1
and 2 are satisfied by construction. The derivations detailing the mapping from the landscape characteristics
to the corresponding parameters in 𝑦∗

𝑖𝑣𝑡 can be found in Appendix 11.5.

3.4 Evaluation criteria
We compare econometric models using a combination of estimate bias, root mean squared error (RMSE),
and coverage probability. Using our Monte Carlo simulations, we calculate estimate bias as the difference
between each model’s mean estimate of the 𝐴𝑇 𝑇 and the known 𝐴𝑇 𝑇 parameter. RMSE describes the
distribution of estimates around the 𝐴𝑇 𝑇 . Coverage probability is defined as the proportion of simulations
in which the true 𝐴𝑇 𝑇 lies within the simulation’s 95% confidence interval (CI). As such, we would expect
the 𝐴𝑇 𝑇 to lie within this CI 95% of the time, however, factors such as the bias of the estimates, their
distribution, and treatment of standard errors may impact coverage.

4 Alternative model specifications can yield unbiased estimates of the 𝐴𝑇 𝑇
TWFE models have risen to prominence due to their flexibility in applying DID methods to settings with
multiple groups and variation in treatment timing. However, TWFE models with pixel fixed effects are not
a viable approach to estimate the 𝐴𝑇 𝑇 in deforestation impact evaluations. Column 1 of Figure 2 shows the
bias associated with Regression 2, a TWFE regression with pixel unit fixed effects. In our guiding example,
the ex-post single difference is 0.02 (the 𝐴𝑇 𝑇 plus the post-treatment group difference in deforestation
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rates), when the true 𝐴𝑇 𝑇 is equal to -0.01. This means that a positive bias of 0.03 results from the use
of this regression model. However, we show that multiple alternate model specifications enable researchers
to generate unbiased estimates of the 𝐴𝑇 𝑇 . We describe several straightforward solutions to this challenge
below.

4.1 Traditional difference-in-differences model
In the two-group, two-period case the traditional DID (Regression 1) is an unbiased estimator of the 𝐴𝑇 𝑇 , as
shown in column 3 of Figure 2 (The typical DID is equivalent to including treatment fixed effects). However,
researchers often want to use TWFE models because of their flexibility in situations that do not fall under
the simplest DID setting. Therefore, researchers should be aware of the trade-offs using aggregated units of
analysis and fixed effects when using TWFE models for deforestation impact evaluation.

4.2 Spatially aggregated fixed effects
One can also use fixed effects at the level of a spatially aggregated unit rather than the pixel to resolve
bias associated with TWFE regressions with pixel fixed effects. For simplicity, we assume the researcher
can choose between three levels at which to aggregate the data: grid cell, county, and property. Pixel level
TWFE models with spatially aggregated unit fixed effects are all in the form of Regression 4.

Regression 4: (pixel level TWFE regression with spatially aggregated unit fixed effects) Let 𝛽𝐹𝐸,𝑗 denote
the coefficient of the interaction between 𝐷𝑖 and 𝟙{𝑡 ≥ 𝑡0} in the following (population) OLS regression:

𝑦𝑜
𝑖𝑣𝑡 = 𝛼 + 𝛽𝐹𝐸,𝑗 x 𝐷𝑖𝟙{𝑡 ≥ 𝑡0} + 𝜆𝑡 + 𝛾𝑗 + 𝜓𝑘 + 𝜖𝑖𝑡 (17)

, where 𝜆𝑡 denotes year fixed effects and 𝛾𝑗 and 𝜓𝑘 denote one of grid (𝑔), county (𝑐), or property (𝑣) fixed
effects (𝑗, 𝑘 = {𝑔, 𝑐, 𝑣}). We include both 𝛾𝑗 and 𝜓𝑘 in order to account for fixed effects at both the level of
treatment assignment, 𝑘 (In this case, 𝑘 = 𝑐), and another spatial unit, 𝑗.

Columns 4-6 of Figure 2 show that pixel level TWFE regressions are unbiased estimators of the 𝐴𝑇 𝑇 when
grid, county, or property fixed effects are used rather than pixel fixed effects. We also see that, in the
absence of property level perturbations (i.e. 𝜎𝑝 = 0 in the DGP), all three models provide similar estimates
and estimate distributions.

4.3 Spatially aggregated units of analysis
Another potential solution to the bias associated with TWFE models is for researchers to aggregate multiple
pixel level observations into larger units of analysis. The researcher must now calculate the deforestation rate
in each time period. While we detail the tradeoffs of various deforestation rate calculations in the appendix
(Appendix 11.10), the following results are based on Equation (18) which is arguably the most commonly
used formula in the literature (e.g. Carlson et al. 2018; Busch et al. 2015).

𝑧𝑗𝑡 = 𝐹𝑗,𝑡−1 − 𝐹𝑗,𝑡
𝐹𝑗,𝑡−1

(18)

, where 𝐹𝑗,𝑡 and 𝐹𝑗,𝑡−1 are the forest cover in unit 𝑗 at times 𝑡 and 𝑡 − 1, respectively. Unit 𝑗 represents one
of the three aggregated units, the grid cell (g), county (c), or property (v).

Regression 5: (grid/county/property level regression) Let 𝛽𝑗 denote the coefficient of the interaction
between 𝐷𝑗 and 𝟙{𝑡 ≥ 𝑡0} in the following (population) OLS regression, where 𝑗 = {𝑔, 𝑐, 𝑣}:

𝑧𝑗𝑡 = 𝛼 + 𝛽𝑗 x 𝐷𝑗𝟙{𝑡 ≥ 𝑡0} + 𝜆𝑡 + 𝛾𝑗 + 𝜖𝑗𝑡 (19)

, where 𝜆𝑡 denotes year fixed effects and 𝛾𝑗 denotes one of grid, county, or property fixed effects. The
treatment variable 𝐷𝑗 = 1

𝑁𝑗
∑𝑁𝑗

𝑖=1 𝐷𝑖, is the average treatment value amongst all pixels in unit 𝑗. Note that
in these regressions, the level of unit fixed effects matches the unit of analysis.

Columns 7-9 of Figure 2 show that neither the bias nor RMSE of the estimates vary dramatically across
different levels of aggregation.
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Figure 2: bias, distribution, and coverage of all models with clustered standard errors.
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4.4 Survival analysis
Survival analysis provides an appealing alternative to traditional linear estimators when studying irreversible
changes such as deforestation. The simple, single-regression DID framing of the Cox Proportional hazards
model (Regression 3), however, is not a viable solution (Section 2.3) under the typical common trends
assumption (Assumption 1). Column 2 of Figure 2 shows the bias associated with this model in our param-
eterization where Assumption 1 holds but Assumption 3 does not. In light of the fact that the simple Cox
DID is not a viable analog to the traditional DID, we explore whether our proposed estimator, ̂𝐴𝑇 𝑇𝐶𝑜𝑥,
recovers relevant treatment effect parameters in the deforestation setting. We see in column 10 that ̂𝐴𝑇 𝑇𝐶𝑜𝑥
indeed recovers our parameter of interest, the 𝐴𝑇 𝑇 .

Although our proposed, survival analysis-based approach to estimation yields a good estimate of the true
𝐴𝑇 𝑇 in this simple setting, multiple considerations raise questions about the utility of this non-linear model
in more complex settings. One of the primary reasons for the use of survival analysis is censoring. This occurs
when the researcher has partial information about the subjects’ survival times but does not have access to
precise event times. While the researcher may not observe all pixels until they are deforested, many other
common forms of censoring are rarely a concern in the context of deforestation since remote sensing typically
enables the creation of balanced panels. Further, the proposed strategy to drop pixels in the periods after
they are first deforested successfully addresses irreversibility in deforestation events. Finally, as we show
in the following sections, survival analysis is likely to suffer from bias when the data generating process
underpinning deforestation is influenced by unobservable characteristics of more aggregated spatial units
such as the preferences of a property-owner. While researchers can account for this in OLS specifications,
there is no clear solution in survival analysis.

5 Non-random sample selection can generate bias

Irreversibility in observed deforestation also creates the potential for non-random sample selection. Specif-
ically, deforested pixels are no longer at risk of clearing in the periods after they are first deforested. This
means the “at risk” set of pixels changes through time as more pixels become deforested. As such, the dis-
tribution that describes the returns to clearing the at-risk pixels may change through time as well, leading
to non-random selection of the sample through time. For example, pixels with extremely high returns to
clearing are more likely to be cleared early on, regardless of treatment status. In subsequent periods, there-
fore, these high return pixels are less likely to be present in the sample at all. In the context of two-groups
and two-periods, only the second period suffers from this non-random sample selection. We express the bias
introduced from non-random sample selection below.

Result: Under Assumptions 1 and 2, in the two-group, two-period case, 𝛽𝐷𝐼𝐷 suffers from non-random
sample selection bias when the 𝑦𝑜

𝑖𝑣𝑡s are not i.i.d.

𝛽𝐷𝐼𝐷 =𝐴𝑇 𝑇 + 𝐸[𝑦𝑜
𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − (𝐸[𝑦𝑜

𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
bias emerging from non-random sample selection

(20)

Proof: Appendix 11.6 Q.E.D.

In essence, the first and third expectations in the bias term are conditional on the pixel remaining forested
after the first period.

Non-random sample selection did not bias our initial simulations as presented in Figure 2 because we assumed
away time-invariant pixel and property-level disturbances. The sample of at risk pixels in each time period
did not depend on the deforestation that occurred the previous period, since the 𝑦𝑜

𝑖𝑣𝑡s were i.i.d.. However,
once time-invariant disturbances enter the DGP, the distribution of the 𝑦𝑜

𝑖𝑣2𝑠 is potentially different from
that of the 𝑦𝑜

𝑖𝑣1s. This is likely to be the case in reality, since each plot of land will have time-invariant
characterisitcs such as slope, elevation, market access, agricultural suitability, etc. that impact its expected
returns to clearing.
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In order to see how this non-random selection influences estimates in our simulated setting, we set 𝜎𝑎, the
standard error of the time-invariant pixel-level disturbances equal to 0.1. Figure 3 shows that non-random
selection introduces a slight downward bias across every specification.

In practice, researchers cannot recover the second and fourth terms of the bias term in equation 20, meaning
that the magnitude of this bias is unknown to the researcher. However, this bias is likely to be of a smaller
magnitude than in our simulated setting if deforestation rates are lower or more similar across treated and
control groups.
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Figure 3: Non-random selection introduces bias into estimates. Specifications are ordered by absolute value
of mean bias (least to most bias)

6 Selecting the appropriate spatial structure

6.1 Model structures that match the spatial process deforestation can reduce bias
Connecting the econometric model to the process by which land use change occurs on the ground has clear
benefits for estimation and inference in deforestation impact evaluation. Table 1 shows that researchers often
use an arbitrary spatial unit such as a point, pixel, or grid cell as the unit of analysis. While this may be
a useful way of structuring data, it can lead to biased results if land use change is determined through a
process that is mediated by other spatial structures.

In reality, property level unobservables such as the preferences and resources of a landowner may drive
significant variation in land use across a landscape. These differences will impact both treatment effect
estimates and coverage probabilities. To illustrate this effect, we introduce property-level perturbations
to the returns from forest clearing by varying 𝜎𝑝, the standard deviation of time-invariant property level
disturbances in the DGP.
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The introduction of 𝜎𝑝 changes the relative performance of each specification. The traditional DID does not
account for the spatial nature of the deforestation process, and in Figure 4, we see that the pixel-level DID
begins to suffer in terms of bias, RMSE, and coverage as these property-level unobservables play a larger
role in the data generating process.
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Figure 4: Bias, RMSE, and coverage of the pixel-level DID model as the relative scale of property level
disturbances increase

In Figure 5 we see that, by incorporating spatially aggregated units into the model structure, the researcher
can reduce bias relative to the simple pixel-level DID in settings where property-level perturbations are
relatively large (𝜎𝑝 = 0.3). This improvement is apparent across specifications that either control for spatially
aggregated fixed effects (Regression 4; left panel) or use a spatially aggregated unit of analysis (Regression
5; right panel). That said, specifications with a spatially aggregated unit of analysis consistently outperform
their counterpart with spatially aggregated fixed effects. Further, we see that the scale of aggregation plays
a role. Analyses incorporating the property or grid cells near the size of the average property outperform
models using larger or smaller scales. Ultimately, all models that incorporate spatial aggregation suffer
from relatively little bias and incur less bias than the simple pixel-level DID. In Appendix 11.8, we see that
specifications incorporating the property as the unit of analysis continue to outperform other models in
alternate parameterizations.
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Figure 5: Bias, distribution, and coverage with 𝜎𝑝 = 0.3 for specifications with aggregated unit fixed effects
(left panel), and specifications with aggregated units of analysis (right panel)

Although spatial aggregation can improve the performance of OLS-based model specifications, there is no
clear analog for survival models. Figure 12 in the appendix shows that the performance of ̂𝐴𝑇 𝑇𝐶𝑜𝑥 suffers
as 𝜎𝑝 increases. When unobserved, spatial processes contribute to the underlying DGP, linear models that
effectively control for these processes are likely to outperform survival analysis-based estimates of the impact
of conservation interventions.

6.2 Weighting by area recovers landscape scale estimates
As researchers transition towards spatially aggregated units of analysis, interpretation of the estimated 𝐴𝑇 𝑇
can become more complicated. Authors frequently choose to use a set of evenly-sized pixels or grid cells
as their preferred units of analysis in order to simplify the interpretation of their estimated 𝐴𝑇 𝑇 (Alix-
Garcia and Gibbs 2017). For example, when researchers estimate a model with pixel-level units of analysis,
the coefficient of interest can be interpreted as a population average for all treated, forested pixels. In
contrast, if a property is used as the unit of analysis, the coefficient should be interpreted as the effect of the
intervention on the characteristic property in the sample. In order to obtain a landscape-scale interpretation,
one must weight the regression by the area of each unit of analysis (i.e. property).

Weighting does not have a large impact on bias, RMSE, or coverage probability when the treatment effect
is constant across properties (even with property-level unobservables). The use of area weights is likely to
be most useful when the treatment effect in the characteristic property differs from the landscape’s 𝐴𝑇 𝑇 .
To illustrate this effect, we consider a landscape in which treatment effects are correlated with property size.
The full DGP for this case can be found in Appendix 11.5.1.
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The treatment effect now varies across properties, and properties with greater areas experience treatment
effects of a lower magnitude than smaller properties. For clarity of definitions, we assign treatment at the
property level in this subsection. We consider two sample 𝐴𝑇 𝑇 s: the landscape 𝐴𝑇 𝑇 and the property-level
𝐴𝑇 𝑇 . They can be defined as follows:

• 𝐴𝑇 𝑇𝑙𝑠 = 1
𝑛𝑖∶𝐷𝑖=1

∑𝑖∶𝐷𝑖=1(𝑦𝑖𝑣2(1)−𝑦𝑖𝑣2(0)), where 𝑛𝑖∶𝐷𝑖=1 is the number of treated pixels in the simulated
landscape; and

• 𝐴𝑇 𝑇𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = 1
𝑛𝑣∶𝐷𝑣=1

∑𝑣∶𝐷𝑣=1( 1
𝑛𝑖𝑣

∑𝑛𝑖𝑣
𝑖=1(𝑦𝑖𝑣2(1) − 𝑦𝑖𝑣2(0))), where 𝑛𝑣∶𝐷𝑣=1 is the number of treated

properties in the simulated landscape; and 𝑛𝑖𝑣 is the number of pixels in property 𝑣.

Note that neither 𝐴𝑇 𝑇𝑙𝑠 nor 𝐴𝑇 𝑇𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 can be calculated directly, because 𝑦(0)𝑖𝑣2 is not observable for
treated units.

Because the treatment is more effective in properties of a smaller size, the treatment effect for the average
property is greater than the average treatment effect experienced across the landscape. Figure 6 shows
the sample 𝐴𝑇 𝑇 s for both the property and landscape. In our simulation, 𝐴𝑇 𝑇𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = -0.0136, and
𝐴𝑇 𝑇𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = -0.0092. The property-level TWFE regression recovers the 𝐴𝑇 𝑇 relative to the characteristic
property when area weights are not used and the landscape scale 𝐴𝑇 𝑇 when they are used. Researchers
should use these area weights when they are interested in the impact of the intervention across the landscape.
In cases where the researcher is interested in how an intervention affects incentives at the property level,
using these weights may not be necessary.
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Figure 6: Weighting recovers landscape scale interpretation

7 Estimating the 𝐴𝑇 𝑇 under staggered treatment

The traditional DID regression applies to settings with two groups and two time periods. However, researchers
often use TWFE regressions to exploit variation across groups of units that receive treatment at different
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times. Recent work has shown that, in these staggered treatment settings, TWFE regressions identify a
weighted average of all possible two-group/two-period DID estimators in the data (Goodman-Bacon 2021).

Further, when estimating the 𝐴𝑇 𝑇 , some weights on each group-time treatment effect parameter may actually
be negative (de Chaisemartin and D’Haultfœuille 2020). Newly developed DID estimators seek to produce
unbiased estimates of the 𝐴𝑇 𝑇 in settings with multiple groups and time periods. These estimators do so
through a variety of strategies including imputation (e.g., Borusyak, Jaravel, and Spiess 2021), two-stage
least squares (e.g., Gardner 2021), and the re-weighting of group-time 𝐴𝑇 𝑇 s (e.g., Callaway and Sant’Anna
2020). Some researchers might hope that these new estimators would solve the bias detailed in Section 2.2.

7.1 New DID estimators are biased when applied to binary, irreversible outcomes
Although the new class of DID estimators effectively address concerns about staggered treatment timing
and heterogeneous treatment effects, they continue to yield biased treatment effect estimates when applied
to binary, irreversible, outcomes. To illustrate this, we introduce a setting in which groups of units receive
treatment at different times (full DGP can be found in Appendix 11.9). We consider three groups: an early
group, a late group, and a never-treated group, where the early and late groups undergo treatment in years
three and four, respectively. Each group experiences differing pre-treatment deforestation rates (7%, 4%,
and 2% for the early, late, and never-treated groups, respectively) and no time trend. The 𝐴𝑇 𝑇 for both
treated groups is −0.02. Common trends is satisfied by construction, and we do not introduce any dynamic
effects. Figure 7 shows the observed deforestation rates (𝐸[𝑦𝑜

𝑖𝑣𝑡]) from one iteration of our simulation in this
setting.
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Figure 7: Observed deforestation in simulated example with multiple groups and periods.

The left panel of Figure 8 shows that the estimators developed in Callaway and Sant’Anna (2020), Gardner
(2021), and Borusyak, Jaravel, and Spiess (2021) suffer from similar bias to TWFE regressions with pixel
unit fixed effects if the pixel is used as the unit of analysis. All methods yield a treatment effect greater
than or equal to 0 in all post-treatment periods, reflecting the fact that pre-treatment period deforestation
rates are unaccounted for by the estimators. This is particularly clear in the Callaway and Sant’Anna (2020)
estimator in which pre-treatment periods are all precisely zero, indicating that the estimator could only
compute treatment effects using pixels that survived until the end of the observation period. The right panel
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of Figure 8 shows that this bias is eliminated when one uses an aggregated unit of analysis with binary
treatment (e.g., county). We do not include pixel-level TWFE regressions with spatially aggregated fixed
effects, because most recently developed estimators do not allow for a comparable implementation. Therefore
if the researcher wants to obtain a landscape-scale interpretation, they must aggregate to a uniform spatial
area (e.g. grid cell) or weight the regression by the unit area.
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Figure 8: New estimators, similar to TWFE regressions with pixel unit fixed effects, cannot identify ATT
with pixel as unit of analysis

7.2 New DID estimators can yield unbiased estimates of heterogeneous treatment ef-
fects

Finally, we examine the performance of the new DID estimators relative to a traditional TWFE regression
when treatment effects vary across time and across groups. We again work with an early, late and untreated
group. The full parameterization and DGP can be found in Appendix 11.9.1. Figure 9 shows deforestation
rates in each of the three groups through time.
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Figure 9: Observed deforestation in simulated example when treatment effects vary across groups and
through time

Figure 10 shows the event study estimates produced by each of the three estimators as well as the “truth” for
both pixel and county-level analyses. Again, none of the estimators yield the 𝐴𝑇 𝑇 with pixel-level analyses.
In the county-level estimates, we see that the newer estimators slightly outperform the TWFE estimator.
This is evidence of the weighting that has become a concern with TWFE estimators in these type of settings.
While TWFE estimates represent a weighted average of all possible 2x2 DID estimates, the weights may not
always be intuitive (Goodman-Bacon 2021). In contrast, newer estimators do not suffer from this concern.
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8 Conclusions

By applying econometric methods of causal inference to remotely-sensed measurements of land use change,
researchers have advanced society’s understanding of the impacts of conservation interventions. However,
this interdisciplinary research community has insufficiently considered how the data generating processes
underpinning land use change and its measurement might affect the performance of standard econometric
models. The analytical proofs and simulations presented in this paper highlight that the conclusions made
in many prior studies may be biased.

Researchers can take several practical steps in the design of their econometric models to more accurately
measure the impacts of conservation policies. First, despite past guidance to the contrary, researchers should
recognize that pixel-level, TWFE models are unable to yield unbiased estimates of a policy’s impact when
applied to irreversible, binary outcomes. Researchers can easily avoid this bias by aggregating either the
units of observation, or the scale at which fixed effects are estimated. Second, while survival models provide
an appealing empirical framework with which to study deforestation, past studies have typically overlooked
implicit assumptions made when applying survival models to the difference in differences research design.
To resolve this challenge, we propose a new, survival-based estimation procedure that enables researchers
to recover an unbiased estimate of the 𝐴𝑇 𝑇 under the traditional parallel trends assumption. Finally, we
provide evidence suggesting that researchers should seek to align the structure of their econometric models
to match the real-world units at which land use decisions are being made. For example, if unobservable,
property-level characteristics are thought to be an important driver of deforestation, the inclusion of property-
level fixed effects can improve the accuracy of model estimates and inference. Ultimately, context plays a
role in what is feasible, and researchers should make clear the limits to their impact evaluation strategy.

Our research contributes to an emerging literature calling for a deeper understanding of the interdependencies
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between the creation of remotely sensed data, and the interpretation of that data through econometric models
(Jain 2020; Alix-Garcia and Millimet 2020). However, we have largely abstracted away from prior concerns
that characteristics of the remote sensing data collection process, including sensor properties, atmospheric
conditions, and image processing methods, may influence the structure of output data products. Of particular
concern is the potential for these processes to give rise to non-classical measurement error, which can lead to
biased estimates of the 𝐴𝑇 𝑇 (Wooldridge 2010). Importantly, our study implicitly assumes that pixel-level
outcomes are measured without any non-classical measurement error. Fortunately, Alix-Garcia and Millimet
(2020) propose a solution for unbiased causal inference in the context of a remotely sensed binary outcome
in which misclassification is non-classical.

Although this paper focuses upon efforts to identify the impacts of conservation policies on deforestation,
the lessons we highlight are relevant to a wider audience. Specifically, many of our key findings apply to
diverse settings in which the outcome of interest represents an irreversible, binary event. For example,
studies exploring the drivers of unidirectional technology adoption may fall prey to the same issues we
have identified in the context of deforestation. Moving forward, researchers should carefully consider the
underlying structure of their data, and ensure that their chosen models minimize bias and allow inference at
expected levels of confidence. Misleading causal inference may lead policymakers to avoid effective policies,
or to adopt interventions that worsen environmental damages.

9 Code availability

This entire paper, including the underlying data, results, figures, and tables can be reproduced using code
available at this link.
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11 Appendix

11.1 proof showing pixel level TWFE regression models with pixel fixed effects do not
identify 𝐴𝑇 𝑇

In settings with a binary and unrepeatable outcome variable, the commonly used pixel level TWFE model
yields the post-treatment difference in outcomes (single difference), rather than the desired 𝐴𝑇 𝑇 .

proof:

Consider a two-period setting (𝑡 = 1, 2) with multiple pixels indexed by 𝑖. We observe 𝑦𝑖𝑡, the realized
deforestation occurring in each pixel in each time period. Some units are exposed to a policy treatment
(𝐷𝑖 = 1) in the second time period (𝑡0 = 2). Using the potential outcomes framework, we consider the
potential outcomes for each observation as 𝑦𝑖,2(𝐷𝑖). In this notation, the treatment effect for unit 𝑖 can be
defined as

𝜏𝑖 = 𝑦𝑖,2(1) − 𝑦𝑖,2(0)

In many deforestation maps generated through remote sensing, deforestation is represented as a binary
indicator. Furthermore, deforestation is only observed once for a given location since these data products
typically do not monitor the timing of reforestation. Given these constraints, deforestation is typically (Alix-
Garcia and Gibbs (2017); Jones and Lewis (2015)) represented as a binary, unrepeatable variable taking the
following values:

𝑦𝑖𝑡 =
⎧{
⎨{⎩

0 the pixel has never been deforested
1 the pixel was deforested in year 𝑡
𝑁𝐴𝑁 the pixel was deforested in a year < 𝑡
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The traditional two-way fixed effects model seeks to estimate this effect using the following regression speci-
fication:

𝑦𝑖𝑡 = 𝛼 + 𝛽𝑇 𝑊𝐹𝐸 x 𝐷𝑖𝟙{𝑡 ≥ 𝑡0} + 𝛾𝑖 + 𝜂𝑡=2 + 𝑢𝑖𝑡, for 𝑡 = 1, 2

Taking into account the data structure of 𝑦𝑖𝑡 and our two-period case, we are left with:

𝑦𝑖1 = 𝛼 + 𝛾𝑖 + 𝑢𝑖1

and

𝑦𝑖2 = {𝛼 + 𝛽𝑇 𝑊𝐹𝐸 x 𝐷𝑖 + 𝛾𝑖 + 𝜂𝑡=2 + 𝑢𝑖2 𝑦𝑖1 = 0
𝑁𝐴𝑁 𝑦𝑖1 ≠ 0

First differencing,

𝑦𝑖2 − 𝑦𝑖1 = {(𝛼 + 𝛽𝑇 𝑊𝐹𝐸 x 𝐷𝑖 + 𝛾𝑖 + 𝜂𝑡=2 + 𝑢𝑖2) − (𝛼 + 𝛾𝑖 + 𝑢𝑖1) 𝑦𝑖1 = 0
𝑁𝐴𝑁 𝑦𝑖1 ≠ 0

Focusing on the first case, where 𝑦𝑖1 = 0

𝑦𝑖2 − 𝑦𝑖1 = (𝛼 + 𝛽𝑇 𝑊𝐹𝐸 x 𝐷𝑖 + 𝛾𝑖 + 𝜂𝑡=2 + 𝑢𝑖2) − (𝛼 + 𝛾𝑖 + 𝑢𝑖1)
= 𝛽𝑇 𝑊𝐹𝐸 x 𝐷𝑖 + 𝜂𝑡=2 + Δ𝑢𝑖

The general expression can be restated as:

𝑦𝑖2 − 𝑦𝑖1 = {𝛽𝑇 𝑊𝐹𝐸 x 𝐷𝑖 + 𝜂𝑡=2 + Δ𝑢𝑖 𝑦𝑖1 = 0
𝑁𝐴𝑁 𝑦𝑖1 ≠ 0

With binary treatment (𝐷𝑖), ̂𝛽𝑇 𝑊𝐹𝐸, the regression’s estimate of 𝛽𝑇 𝑊𝐹𝐸 can be expressed as the double
difference in mean outcomes across treated / untreated units, and across the two time periods:

̂𝛽 = 1
𝑛𝑖∶𝐷𝑖=1

∑
𝑖∶𝐷𝑖=1

𝑦𝑖2 − 1
𝑛𝑖∶𝐷𝑖=1

∑
𝑖∶𝐷𝑖=1

𝑦𝑖1 − ( 1
𝑛𝑖∶𝐷𝑖=0

∑
𝑖∶𝐷𝑖=0

𝑦𝑖2 − 1
𝑛𝑖∶𝐷𝑖=0

∑
𝑖∶𝐷𝑖=0

𝑦𝑖1)

However, this is only valid when 𝑦𝑖1 = 0. As a result, we can restate as:

̂𝛽𝑇 𝑊𝐹𝐸 = 1
𝑛𝑖∶𝐷𝑖=1

∑
𝑖∶𝐷𝑖=1

𝑦𝑖2 − 0 − ( 1
𝑛𝑖∶𝐷𝑖=0

∑
𝑖∶𝐷𝑖=0

𝑦𝑖2 − 0)

Applying the potential outcomes notation to indicate whether we see the treated or untreated outcome:

̂𝛽𝑇 𝑊𝐹𝐸 = 1
𝑛𝑖∶𝐷𝑖=1

∑
𝑖∶𝐷𝑖=1

𝑦𝑖2(1) − 1
𝑛𝑖∶𝐷𝑖=0

∑
𝑖∶𝐷𝑖=0

𝑦𝑖2(0)
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Adding and subtracting 1
𝑛𝑖∶𝐷𝑖=1

∑𝑖∶𝐷𝑖=1 𝑦𝑖2(0) gives:

̂𝛽𝑇 𝑊𝐹𝐸 = 1
𝑛𝑖∶𝐷𝑖=1

∑
𝑖∶𝐷𝑖=1

𝑦𝑖2(1) − 𝑦𝑖2(0)

+ 1
𝑛𝑖∶𝐷𝑖=0

∑
𝑖∶𝐷𝑖=1

𝑦𝑖2(0) − 1
𝑛𝑖∶𝐷𝑖=0

∑
𝑖∶𝐷𝑖=0

𝑦𝑖2(0)

And finally, taking the expectation gives:

𝐸[ ̂𝛽𝑇 𝑊𝐹𝐸] = 𝐴𝑇 𝑇 + 𝐷𝑖𝑓𝑓
𝛽𝑇 𝑊𝐹𝐸 = 𝐴𝑇 𝑇 + 𝐷𝑖𝑓𝑓

�

11.2 TWFE with pixel fixed effects is equivalent to running TWFE on dataset after
dropping all pixels that were deforested in the first period

Table 3 shows that the coefficient of interest from the TWFE regression with pixel fixed effects is equivalent
to the same regression on a dataset where all pixels deforested in the first period are dropped. We generate
a panel of two years pre-and post treatment in order to show that the estimated coefficient is not equivalent
to the ex-post difference in means, although both should be estimating the same parameter. This exercise
provides further evidence that this commonly used TWFE regression is not adequate for recovering the 𝐴𝑇 𝑇 .

Table 3: TWFE with pixel fixed effects is equivalent to TWFE on dataset with all first-period deforested
pixels dropped completely from the dataset

model Bias RMSE 0.25 to 0.75 quantile

DID 0.0001034 0.0015268 -0.00088 , 0.0011

ex-post difference in means 0.0300441 0.0300609 0.02935 , 0.03074

TWFE 0.0359502 0.0359744 0.03501 , 0.03684

TWFE on dataset dropping deforested pixels prior to treatment 0.0359502 0.0359744 0.03501 , 0.03684

11.3 Keeping pixels in periods after they are first deforested is not a viable solution
Remotely sensed metrics of deforestation at the pixel level are often subject to the dynamics of forest
disturbance and regrowth. After a deforestation event occurs, the deforested area is unlikely to revert to
forest cover within the study period, as it takes several years for forest to regenerate to a detectable level.
Further, many data products do not allow for the monitoring of forest regrowth. In the panel therefore, it
is likely that in the periods after a pixel is first realized as deforested, subsequent observations of the pixel
will also observe the pixel as deforested.

The logic for dropping binary pixels after they first become deforested is as follows. A forested pixel switches
from its assigned value of 0 to a value of 1 following a discrete deforestation event. Keeping the deforested
pixel in the panel beyond the first period in which it was observed as deforested may imply that it has
actively been deforested in each subsequent time period. In fact, no new deforestation event has ocurred,
but the area simply remains deforested from the prior event. These pixels, therefore, contribute positively
towards the deforestation rate in each period they are left in the panel. As such, the coefficient cannot
recover the 𝐴𝑇 𝑇 .
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11.3.1 Analytical expression of bias in two-period two-group case when pixels are not dropped
from the panel

The DID estimand is

𝐸[𝑦𝑖𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 1] − (𝐸[𝑦𝑖𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑖𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 0])
=𝑃(𝑦𝑖𝑡 = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1) − 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 1)−

(𝑃(𝑦𝑖𝑡 = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0) − 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 0))

In the case of an irreversible binary outcome, the first and third terms can be reexpressed, giving

𝑃 (𝑦𝑖𝑡 = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1) ∪ 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 1) − 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 1)−
(𝑃 (𝑦𝑖𝑡 = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0) ∪ 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 0) − 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 0))

=𝑃(𝑦𝑖𝑡 = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1) + 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 1) − 𝑃(𝑦𝑖𝑡 = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1) ∩ 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 1)−
𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 1)−
(𝑃(𝑦𝑖𝑡 = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0) + 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 0) − 𝑃(𝑦𝑖𝑡 = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0) ∩ 𝑃(𝑦𝑖𝑡 = 1|𝑡 < 𝑡0, 𝐷𝑖 = 0)

11.3.2 Monte Carlo evidence

Figure 11 demonstrates the bias incurred from keeping deforested pixels in the panel after they are first
realized as deforested in the context of our guiding example. Pixels that were deforested prior to the
implementation of the policy continued to contribute to the deforestation rate in the post period in both the
treatment and control groups. Dropping the pixels in the periods after they are first observed as deforested
eliminates this bias in the DID model, as seen in Figure 11.
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Figure 11: Distribution of DID estimates leaving deforested pixels in the panel and of DID estimates dropping
deforested pixels. Note that leaving deforested pixels in the panel incurs severe bias.

11.4 Cox PH DID identifies 𝐻𝑅𝑇 𝑇 when proportional trends assumption holds
The exponentiated coefficient on the interaction between two binary variables, 𝐷𝑖 and 𝟙{𝑡 ≥ 𝑡0},
𝑒𝑥𝑝(𝛽𝑐𝑜𝑥𝐷𝐼𝐷), is expressed as the ratio of the two pre-post hazard rate ratios across the two groups:

𝑒𝑥𝑝(𝛽𝑐𝑜𝑥𝐷𝐼𝐷) = 𝐸[𝑦𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]/𝐸[𝑦𝑖𝑣𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 1]
𝐸[𝑦𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0]/𝐸[𝑦𝑖𝑣𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 0] (21)

Introducing potential outcomes and simplifying:

𝑒𝑥𝑝(𝛽𝑐𝑜𝑥𝐷𝐼𝐷) = 𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0]
𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0]𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1] (22)

Now, operating under Assumption 1 (Proportional Trends) and substituting for the right-hand side of (7):

𝑒𝑥𝑝(𝛽𝑐𝑜𝑥𝐷𝐼𝐷) = 𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1]
𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1] (23)

= 𝐻𝑅𝑅𝑇 (24)
� (25)
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11.5 Initial Monte Carlo parameter to 𝛽 coefficient mapping
The following five parameters and their definitions inform the simulation parameterizations.

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒0 = 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0]
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒1 = 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1]

𝑡𝑟𝑒𝑛𝑑0 = 𝐸[𝑦𝑖𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0]
𝑡𝑟𝑒𝑛𝑑1 = 𝐸[𝑦𝑖𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1]

𝐴𝑇 𝑇 = 𝐸[𝑦𝑖𝑡(1) − 𝑦𝑖𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]

Note the following constraints on the parameters:

𝐸[𝑦𝑖𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] ≥ 0
𝐸[𝑦𝑖𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] ≥ 0

The parameters can be expressed as follows:

𝐴𝑇 𝑇 =𝐸[𝑦𝑖𝑡(1) − 𝑦𝑖𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]
=𝐸[𝑦𝑖𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1]
=𝑃 (𝑦𝑖𝑡(1) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1) − 𝑃(𝑦𝑖𝑡(0) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1)
=𝑃 (𝑦∗

𝑖𝑡(1) > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1) − 𝑃(𝑦∗
𝑖𝑡(0) > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1)

=𝑃 (𝛽0 + 𝛽1 + 𝛽2,1 + 𝛽3 + 𝛼𝑖 + 𝑢𝑖𝑡 > 0) − 𝑃(𝛽0 + 𝛽1 + 𝛽2,1 + 𝛼𝑖 + 𝑢𝑖𝑡 > 0)
=𝑃 (−𝛼𝑖 − 𝑢𝑖𝑡 < 𝛽0 + 𝛽1 + 𝛽2,1 + 𝛽3) − 𝑃(−𝛼𝑖 − 𝑢𝑖𝑡 < 𝛽0 + 𝛽1 + 𝛽2,1)
=𝐹(𝛽0 + 𝛽1 + 𝛽2,1 + 𝛽3) − 𝐹(𝛽0 + 𝛽1 + 𝛽2,1)

𝑡𝑟𝑒𝑛𝑑0 =𝐸[𝑦𝑖𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0]
=𝑃(𝑦𝑖𝑡(0) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0) − 𝑃(𝑦𝑖𝑡(0) = 1|𝑡 < 𝑡0, 𝐷𝑖 = 0)
=𝑃(𝑦∗

𝑖𝑡(0) > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0|𝑦∗
𝑖𝑡(0) < 0|𝑡 < 𝑡0, 𝐷𝑖 = 0) − 𝑃(𝑦∗

𝑖𝑡(0) > 0|𝑡 < 𝑡0, 𝐷𝑖 = 0)

=(1 − 𝑃(𝑦∗
𝑖𝑡(0) > 0|𝑡 < 𝑡0, 𝐷𝑖 = 0))𝑃(𝑦∗

𝑖𝑡(0) > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0)
(1 − 𝑃(𝑦∗

𝑖𝑡(0) > 0|𝑡 < 𝑡0, 𝐷𝑖 = 0)) − 𝑃(𝑦∗
𝑖𝑡(0) > 0|𝑡 < 𝑡0, 𝐷𝑖 = 0)

=𝑃(−𝛼𝑖 − 𝑢𝑖𝑡 < 𝛽0 + 𝛽2,0) − 𝑃(−𝛼𝑖 − 𝑢𝑖𝑡 < 𝛽0)
=𝐹(𝛽0 + 𝛽2,0) − 𝐹(𝛽0)

𝑡𝑟𝑒𝑛𝑑1 =𝐸[𝑦𝑖𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1]
=𝑃(𝑦𝑖𝑡(0) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1) − 𝑃(𝑦𝑖𝑡(0) = 1|𝑡 < 𝑡0, 𝐷𝑖 = 1)
=𝑃(𝑦∗

𝑖𝑡(0) > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1 ∩ 𝑦∗
𝑖𝑡(0) < 0|𝑡 < 𝑡0, 𝐷𝑖 = 1) − 𝑃(𝑦∗

𝑖𝑡(0) > 0|𝑡 < 𝑡0, 𝐷𝑖 = 1)
=𝑃(−𝛼𝑖 − 𝑢𝑖𝑡 < 𝛽0 + 𝛽1 + 𝛽2,1) − 𝑃(−𝛼𝑖 − 𝑢𝑖𝑡 < 𝛽0 + 𝛽1)
=𝐹(𝛽0 + 𝛽1 + 𝛽2,1) − 𝐹(𝛽0 + 𝛽1)
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𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒0 =𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0]
=𝑃(𝑦𝑖𝑡(0) = 1|𝑡 < 𝑡0, 𝐷𝑖 = 0)
=𝑃(𝑦∗

𝑖𝑡(0) > 0|𝑡 < 𝑡0, 𝐷𝑖 = 0)
=𝑃(−𝛼𝑖 − 𝑢𝑖𝑡 < 𝛽0)
=𝐹(𝛽0)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒1 =𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1]
=𝑃(𝑦𝑖𝑡(0) = 1|𝑡 < 𝑡0, 𝐷𝑖 = 1)
=𝑃(𝑦∗

𝑖𝑡(0) > 0|𝑡 < 𝑡0, 𝐷𝑖 = 1)
=𝑃(−𝛼𝑖 − 𝑢𝑖𝑡 < 𝛽0 + 𝛽1)
=𝐹(𝛽0 + 𝛽1)

, Where 𝐹() is the CDF of a 𝑁(0, 𝜎2
𝑎 + 𝜎2

𝑢 + 𝜎2
𝑝)

Now solving for the 𝛽 coefficients:

solving for 𝛽0

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒0 = 𝐹(𝛽0)
⇔

𝛽0 = 𝐹 −1(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒0)

solving for 𝛽1

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒1 = 𝐹(𝛽0 + 𝛽1)
⇔

𝛽1 = 𝐹 −1(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒1) − 𝛽0

solving for 𝛽2,0

𝑡𝑟𝑒𝑛𝑑 = 𝐹(𝛽0 + 𝛽2,0) − 𝐹(𝛽0)
⇔

𝑡𝑟𝑒𝑛𝑑 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒0 = 𝐹(𝛽0 + 𝛽2,0)
⇔

𝐹 −1(𝑡𝑟𝑒𝑛𝑑 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒0) = 𝛽0 + 𝛽2,0
⇔

𝛽2,0 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒0) − 𝛽0

solving for 𝛽2,1

𝑡𝑟𝑒𝑛𝑑 = 𝐹(𝛽0 + 𝛽1 + 𝛽2,1) − 𝐹(𝛽0 + 𝛽1)
⇔

𝑡𝑟𝑒𝑛𝑑 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒1 = 𝐹(𝛽0 + 𝛽1 + 𝛽2,1)
⇔

𝐹 −1(𝑡𝑟𝑒𝑛𝑑 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒1) = 𝛽0 + +𝛽1 + 𝛽2,1
⇔

𝛽2,1 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒1) − 𝛽0 − 𝛽1
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solving for 𝛽3

𝐴𝑇 𝑇 = 𝐹(𝛽0 + 𝛽1 + 𝛽2,1 + 𝛽3) − 𝐹(𝛽0 + 𝛽1 + 𝛽2,1)
⇔

𝐴𝑇 𝑇 + 𝐹(𝛽0 + 𝛽1 + 𝛽2,1) = 𝐹(𝛽0 + 𝛽1 + 𝛽2,1 + 𝛽3)
⇔

𝐹 −1(𝐴𝑇 𝑇 + 𝐹(𝛽0 + 𝛽1 + 𝛽2,1)) = 𝛽0 + 𝛽1 + 𝛽2,1 + 𝛽3
⇔

𝛽3 = 𝐹 −1(𝐴𝑇 𝑇 + 𝐹(𝛽0 + 𝛽1 + 𝛽2,1)) − (𝛽0 + 𝛽1 + 𝛽2,1)

11.5.1 when treatment effects are correlated with property size

𝐴𝑇 𝑇 = 𝐸(𝛽0 + 𝛽1 + 𝛽2,1 + 𝛽3) − 𝐸(𝛽0 + 𝛽1 + 𝛽2,1)
= 𝑃 (−𝛼𝑖 − 𝑢𝑖𝑡 − 𝛽3 < 𝛽0 + 𝛽1 + 𝛽2,1 + 𝜇) − 𝑃(−𝛼𝑖 − 𝑢𝑖𝑡 < 𝛽0 + 𝛽1 + 𝛽2,1)
= 𝐺(𝛽0 + 𝛽1 + 𝛽2,1 + 𝜇) − 𝐹(𝛽0 + 𝛽1 + 𝛽2,1)

, where 𝛽3 ∼ 𝑁(𝜇, 𝜎2
𝑡𝑒) and 𝐺() is the CDF of a 𝑁(0, 𝜎2

𝑎 + 𝜎2
𝑢 + 𝜎2

𝑝 + 𝜎2
𝑡𝑒) and

𝐴𝑇 𝑇 = 𝐺(𝛽0 + 𝛽1 + 𝛽2,1) − 𝐹(𝛽0 + 𝛽1 + 𝛽2,1)
⇔

𝐴𝑇 𝑇 + 𝐹(𝛽0 + 𝛽1 + 𝛽2,1) = 𝐺(𝛽0 + 𝛽1 + 𝛽2,1 + 𝜇)
⇔

𝐺−1(𝐴𝑇 𝑇 + 𝐹(𝛽0 + 𝛽1 + 𝛽2,1)) = 𝛽0 + 𝛽1 + 𝛽2,1 + 𝜇
⇔

𝜇 = 𝐺−1(𝐴𝑇 𝑇 + 𝐹(𝛽0 + 𝛽1 + 𝛽2,1)) − (𝛽0 + 𝛽1 + 𝛽2,1)

11.6 Analytical expression of non-random sample selection bias in two-period two-
group setting

In the two-group, two-period case, the bias can be expressed by the difference between the 𝐷𝐼𝐷 estimand
and the 𝐴𝑇 𝑇 :

𝛽𝐷𝐼𝐷 − 𝐴𝑇 𝑇 =𝐸[𝑦𝑜
𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑜

𝑖𝑣𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 1] − (𝐸[𝑦𝑜
𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑜

𝑖𝑣𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 0])
− (𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1])

In the first period, the expectation of 𝑦𝑜
𝑖𝑣𝑡 is the same as that of 𝑦𝑖𝑣𝑡, giving:

𝛽𝐷𝐼𝐷 − 𝐴𝑇 𝑇 =𝐸[𝑦𝑜
𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 1] − (𝐸[𝑦𝑜

𝑖𝑣𝑡|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑖𝑣𝑡|𝑡 < 𝑡0, 𝐷𝑖 = 0])
− (𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1])

Applying potential outcomes:

𝛽𝐷𝐼𝐷 − 𝐴𝑇 𝑇 =𝐸[𝑦𝑜
𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 1] − (𝐸[𝑦𝑜

𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0])
− (𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1])
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Applying our common trends assumption:

𝛽𝐷𝐼𝐷 − 𝐴𝑇 𝑇 =𝐸[𝑦𝑜
𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0] − (𝐸[𝑦𝑜

𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 < 𝑡0, 𝐷𝑖 = 0])
− (𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0])

3 Simplifying:

𝛽𝐷𝐼𝐷 − 𝐴𝑇 𝑇 =𝐸[𝑦𝑜
𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑜

𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0]
− (𝐸[𝑦𝑖𝑣𝑡(1)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝐸[𝑦𝑖𝑣𝑡(0)|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0])

Extending to our simulations:

In the context of our monte carlo simulations, this can be extended:

𝛽𝐷𝐼𝐷 − 𝐴𝑇 𝑇 =𝑃[𝑦𝑜
𝑖𝑣𝑡(1) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝑃 [𝑦𝑜

𝑖𝑣𝑡(0) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0]
− (𝑃 [𝑦𝑖𝑣𝑡(1) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝑃 [𝑦𝑖𝑣𝑡(0) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0])

𝛽𝐷𝐼𝐷 − 𝐴𝑇 𝑇 =𝑃[(𝑦𝑖𝑣𝑡(1) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1)|(𝑦𝑖𝑣𝑡(0) = 0|𝑡 < 𝑡0, 𝐷𝑖 = 1)]
− 𝑃 [(𝑦𝑖𝑣𝑡(0) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0)|(𝑦𝑖𝑣𝑡(0) = 0|𝑡 < 𝑡0, 𝐷𝑖 = 0)]
− (𝑃 [𝑦𝑖𝑣𝑡(1) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝑃 [𝑦𝑖𝑣𝑡(0) = 1|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0])

𝛽𝐷𝐼𝐷 − 𝐴𝑇 𝑇 =𝑃[(𝑦∗
𝑖𝑣𝑡(1) > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1)|(𝑦∗

𝑖𝑣𝑡(0) ≤ 0|𝑡 < 𝑡0, 𝐷𝑖 = 1)]
− 𝑃 [(𝑦∗

𝑖𝑣𝑡(0) > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0)|(𝑦∗
𝑖𝑣𝑡(0) ≤ 0|𝑡 < 𝑡0, 𝐷𝑖 = 0)]

− (𝑃 [𝑦∗
𝑖𝑣𝑡(1) > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝑃 [𝑦∗

𝑖𝑣𝑡(0) > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0])

Here, we let 𝑡 ∈ {1, 2} denote the first and second periods, respectively:

𝛽𝐷𝐼𝐷 − 𝐴𝑇 𝑇 =𝑃[(𝛽0 + 𝛽1 + 𝛽2,1 + 𝛽3 + 𝛼𝑖 + 𝑢𝑖2 + 𝜌𝑣 > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1)|(𝛽0 + 𝛽1 + 𝛼𝑖 + 𝑢𝑖1 + 𝜌𝑣 ≤ 0|𝑡 < 𝑡0, 𝐷𝑖 = 1)]
− 𝑃 [(𝛽0 + 𝛽2,0 + 𝛼𝑖 + 𝑢𝑖2 + 𝜌𝑣 > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0)|(𝛽0 + 𝛼𝑖 + 𝑢𝑖1 + 𝜌𝑣 ≤ 0|𝑡 < 𝑡0, 𝐷𝑖 = 0)]
− (𝑃 [𝛽0 + 𝛽1 + 𝛽2,1 + 𝛽3 + 𝛼𝑖 + 𝑢𝑖2 + 𝜌𝑣 > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 1] − 𝑃 [𝛽0 + 𝛽2,0 + 𝛼𝑖 + 𝑢𝑖2 + 𝜌𝑣 > 0|𝑡 ≥ 𝑡0, 𝐷𝑖 = 0])

11.7 Full summary figure from all specifications and values of 𝜎𝑝

Using Figure 12 to compare across all specifications and varying 𝜎𝑝, we see that RMSE tends to increase
across all specifications as 𝜎𝑝 increases. The pixel-level TWFE specifications with spatially aggregated unit
fixed effects tend to have the lowest RMSE whenever 𝜎𝑝 is nonzero. In contrast, the specification with the
property as the unit of analysis and pixel-level DID tend to have the highest RMSE.
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Figure 12: bias, distribution, and coverage of all models with clustered standard errors. Each subplot
represents simulated landscapes with varying 𝜎𝑝. specifications are ordered within subplots by absolute
value of mean bias (by least to most).

11.8 Property-level models still outperform in alternative parameterizations
Figure 13 shows model performance for two alternate landscape parameterizations in the presence of property
unobservables (𝜎𝑝), ordered from least to most biased. The top panel considers our initial parameterization,
but switches the pre-treatment deforestation rates for the two groups. This leaves a pre-treatment deforesta-
tion rate of 5% in the control areaand 2% in the intervention area. The bottom panel considers the initial
parameterization, but instead makes the 𝐴𝑇 𝑇 positive (i.e. 𝐴𝑇 𝑇 = 0.01 rather than −0.01).
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Figure 13: Property-level specification still outperform others in presence of property unobservables with
alternative landscape parameterizations

11.9 DGP for multiple groups and variation in treatment timing
The following parameters and their definitions inform the simulation parameterizations.
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𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑎 = 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐺𝑖 = 𝑎]
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑏 = 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐺𝑖 = 𝑏]
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑐 = 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐺𝑖 = 𝑐]

𝑡𝑟𝑒𝑛𝑑1 = 𝐸[𝑦𝑖𝑡(0)|𝑡 = 1, 𝐺𝑖 = 𝑔] − 𝐸[𝑦𝑖𝑡(0)|𝑡 = 0, 𝐺𝑖 = 𝑔]
𝑡𝑟𝑒𝑛𝑑2 = 𝐸[𝑦𝑖𝑡(0)|𝑡 = 2, 𝐺𝑖 = 𝑔] − 𝐸[𝑦𝑖𝑡(0)|𝑡 = 1, 𝐺𝑖 = 𝑔]
𝑡𝑟𝑒𝑛𝑑3 = 𝐸[𝑦𝑖𝑡(0)|𝑡 = 3, 𝐺𝑖 = 𝑔] − 𝐸[𝑦𝑖𝑡(0)|𝑡 = 2, 𝐺𝑖 = 𝑔]
𝑡𝑟𝑒𝑛𝑑4 = 𝐸[𝑦𝑖𝑡(0)|𝑡 = 4, 𝐺𝑖 = 𝑔] − 𝐸[𝑦𝑖𝑡(0)|𝑡 = 3, 𝐺𝑖 = 𝑔]

𝐴𝑇 𝑇 = 𝐸[𝑦𝑖𝑡(1) − 𝑦𝑖𝑡(0)|𝑡 ≥ 𝑡0, 𝐺𝑖 = 𝑔]

Here, three groups, 𝑔 ∈ {𝑎, 𝑏, 𝑐} have different baseline deforestation rates, and all three groups would
experience the same trends in the absence of treatment. Group 𝑎 experiences treatment in time 2, group
𝑏 experiences treatment in time 3, and group 𝑐 is never treated. The 𝐴𝑇 𝑇 is equal across the two treated
groups and there are no dynamic effects.

The DGP for each observation can be written as follows:

Group 𝑎:

𝑦∗
𝑖𝑡 = 𝛽0,𝑎1{𝑡 = 0} + 𝛽1,𝑎1{𝑡 = 1} + 𝛽2,𝑎1{𝑡 = 2} + 𝛽3,𝑎1{𝑡 = 3} + 𝛽4,𝑎1{𝑡 = 4} + 𝜏𝑎1{𝑡 ≥ 2} + 𝛼𝑖 + 𝑢𝑖𝑡

Group 𝑏:

𝑦∗
𝑖𝑡 = 𝛽0,𝑏1{𝑡 = 0} + 𝛽1,𝑏1{𝑡 = 1} + 𝛽2,𝑏1{𝑡 = 2} + 𝛽3,𝑏1{𝑡 = 3} + 𝛽4,𝑏1{𝑡 = 4} + 𝜏𝑏1{𝑡 ≥ 3} + 𝛼𝑖 + 𝑢𝑖𝑡

Group 𝑐:

𝑦∗
𝑖𝑡 = 𝛽0,𝑐1{𝑡 = 0} + 𝛽1,𝑐1{𝑡 = 1} + 𝛽2,𝑐1{𝑡 = 2} + 𝛽3,𝑐1{𝑡 = 3} + 𝛽4,𝑐1{𝑡 = 4} + 𝛼𝑖 + 𝑢𝑖𝑡

, where the 𝛽 and 𝜏 coefficients are calculated as follows:

𝛽0,𝑎 = 𝐹 −1(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑎)
𝛽1,𝑎 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑1 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑎) − 𝛽0,𝑎
𝛽2,𝑎 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑2 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎
𝛽3,𝑎 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑3 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎 + 𝛽2,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎 − 𝛽2,𝑎
𝛽4,𝑎 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑4 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎 + 𝛽2,𝑎 + 𝛽3,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎 − 𝛽2,𝑎 − 𝛽3,𝑎

𝜏𝑎 = 𝐹 −1(𝐴𝑇 𝑇 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎 + 𝛽2,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎 − 𝛽2,𝑎

𝛽0,𝑏 = 𝐹 −1(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑏)
𝛽1,𝑏 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑1 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑏) − 𝛽0,𝑏
𝛽2,𝑏 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑2 + 𝐹(𝛽0,𝑏 + 𝛽1,𝑏)) − 𝛽0,𝑏 − 𝛽1,𝑏
𝛽3,𝑏 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑3 + 𝐹(𝛽0,𝑏 + 𝛽1,𝑏 + 𝛽2,𝑏)) − 𝛽0,𝑏 − 𝛽1,𝑏 − 𝛽2,𝑏
𝛽4,𝑏 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑4 + 𝐹(𝛽0,𝑏 + 𝛽1,𝑏 + 𝛽2,𝑏 + 𝛽3,𝑏)) − 𝛽0,𝑏 − 𝛽1,𝑏 − 𝛽2,𝑏 − 𝛽3,𝑏

𝜏𝑏 = 𝐹 −1(𝐴𝑇 𝑇 + 𝐹(𝛽0,𝑏 + 𝛽1,𝑏 + 𝛽2,𝑏 + 𝛽3,𝑏)) − 𝛽0,𝑏 − 𝛽1,𝑏 − 𝛽2,𝑏 − 𝛽3,𝑏
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𝛽0,𝑐 = 𝐹 −1(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑐)
𝛽1,𝑐 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑1 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑐) − 𝛽0,𝑐
𝛽2,𝑐 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑2 + 𝐹(𝛽0,𝑐 + 𝛽1,𝑐)) − 𝛽0,𝑐 − 𝛽1,𝑐
𝛽3,𝑐 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑3 + 𝐹(𝛽0,𝑐 + 𝛽1,𝑐 + 𝛽2,𝑐)) − 𝛽0,𝑐 − 𝛽1,𝑐 − 𝛽2,𝑐
𝛽4,𝑐 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑4 + 𝐹(𝛽0,𝑐 + 𝛽1,𝑐 + 𝛽2,𝑐 + 𝛽3,𝑐)) − 𝛽0,𝑐 − 𝛽1,𝑐 − 𝛽2,𝑐 − 𝛽3,𝑐

, Where 𝐹() is the CDF of a 𝑁(0, 𝜎2
𝑎 + 𝜎2

𝑢)

11.9.1 parameterization for heterogeneous treatment effects example

The following parameters and their definitions inform the simulation parameterizations.

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑎 = 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐺𝑖 = 𝑎]
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑏 = 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐺𝑖 = 𝑏]
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑐 = 𝐸[𝑦𝑖𝑡(0)|𝑡 < 𝑡0, 𝐺𝑖 = 𝑐]

𝑡𝑟𝑒𝑛𝑑1 = 𝐸[𝑦𝑖𝑡(0)|𝑡 = 1, 𝐺𝑖 = 𝑔] − 𝐸[𝑦𝑖𝑡(0)|𝑡 = 0, 𝐺𝑖 = 𝑔]
𝑡𝑟𝑒𝑛𝑑2 = 𝐸[𝑦𝑖𝑡(0)|𝑡 = 2, 𝐺𝑖 = 𝑔] − 𝐸[𝑦𝑖𝑡(0)|𝑡 = 1, 𝐺𝑖 = 𝑔]
𝑡𝑟𝑒𝑛𝑑3 = 𝐸[𝑦𝑖𝑡(0)|𝑡 = 3, 𝐺𝑖 = 𝑔] − 𝐸[𝑦𝑖𝑡(0)|𝑡 = 2, 𝐺𝑖 = 𝑔]
𝑡𝑟𝑒𝑛𝑑4 = 𝐸[𝑦𝑖𝑡(0)|𝑡 = 4, 𝐺𝑖 = 𝑔] − 𝐸[𝑦𝑖𝑡(0)|𝑡 = 3, 𝐺𝑖 = 𝑔]

𝐴𝑇 𝑇0,𝑎 = 𝐸[𝑦𝑖𝑡(1) − 𝑦𝑖𝑡(0)|𝑡 = 2, 𝐺𝑖 = 𝑎]
𝐴𝑇 𝑇1,𝑎 = 𝐸[𝑦𝑖𝑡(1) − 𝑦𝑖𝑡(0)|𝑡 = 3, 𝐺𝑖 = 𝑎]
𝐴𝑇 𝑇2,𝑎 = 𝐸[𝑦𝑖𝑡(1) − 𝑦𝑖𝑡(0)|𝑡 = 4, 𝐺𝑖 = 𝑎]
𝐴𝑇 𝑇0,𝑏 = 𝐸[𝑦𝑖𝑡(1) − 𝑦𝑖𝑡(0)|𝑡 = 3, 𝐺𝑖 = 𝑏]
𝐴𝑇 𝑇1,𝑏 = 𝐸[𝑦𝑖𝑡(1) − 𝑦𝑖𝑡(0)|𝑡 = 4, 𝐺𝑖 = 𝑏]

Here, three groups, 𝑔 ∈ {𝑎, 𝑏, 𝑐} have different baseline deforestation rates, and all three groups would
experience the same trends in the absence of treatment. Group 𝑎 experiences treatment in time 2, group
𝑏 experiences treatment in time 3, and group 𝑐 is never treated. The 𝐴𝑇 𝑇 is equal across the two treated
groups and there are no dynamic effects.

The DGP for each observation can be written as follows:

Group 𝑎:

𝑦𝑖𝑡 = 𝛽0,𝑎1{𝑡 = 0}+𝛽1,𝑎1{𝑡 = 1}+(𝛽2,𝑎 +𝜏0,𝑎)1{𝑡 = 2}+(𝛽3,𝑎 +𝜏1,𝑎)1{𝑡 = 3}+(𝛽4,𝑎 +𝜏2,𝑎)1{𝑡 = 4}+𝛼𝑖 +𝑢𝑖𝑡

Group 𝑏:

𝑦𝑖𝑡 = 𝛽0,𝑏1{𝑡 = 0} + 𝛽1,𝑏1{𝑡 = 1} + 𝛽2,𝑏1{𝑡 = 2} + (𝛽3,𝑏 + 𝜏0,𝑏)1{𝑡 = 3} + (𝛽4,𝑏 + 𝜏1,𝑏)1{𝑡 = 4} + 𝛼𝑖 + 𝑢𝑖𝑡

Group 𝑐:

𝑦𝑖𝑡 = 𝛽0,𝑐1{𝑡 = 0} + 𝛽1,𝑐1{𝑡 = 1} + 𝛽2,𝑐1{𝑡 = 2} + 𝛽3,𝑐1{𝑡 = 3} + 𝛽4,𝑐1{𝑡 = 4} + 𝛼𝑖 + 𝑢𝑖𝑡

, where the 𝛽 and 𝑡𝑎𝑢 coefficients are calculated as follows:
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𝛽0,𝑎 = 𝐹 −1(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑎)
𝛽1,𝑎 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑1 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑎) − 𝛽0,𝑎
𝛽2,𝑎 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑2 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎
𝛽3,𝑎 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑3 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎 + 𝛽2,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎 − 𝛽2,𝑎
𝛽4,𝑎 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑4 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎 + 𝛽2,𝑎 + 𝛽3,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎 − 𝛽2,𝑎 − 𝛽3,𝑎
𝜏0,𝑎 = 𝐹 −1(𝐴𝑇 𝑇0,𝑎 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎 + 𝛽2,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎 − 𝛽2,𝑎
𝜏1,𝑎 = 𝐹 −1(𝐴𝑇 𝑇1,𝑎 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎 + 𝛽2,𝑎 + 𝛽3,𝑎 + 𝜏0,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎 − 𝛽2,𝑎 − 𝛽3,𝑎 − 𝜏0,𝑎
𝜏2,𝑎 = 𝐹 −1(𝐴𝑇 𝑇2,𝑎 + 𝐹(𝛽0,𝑎 + 𝛽1,𝑎 + 𝛽2,𝑎 + 𝛽3,𝑎 + 𝜏0,𝑎 + 𝜏1,𝑎)) − 𝛽0,𝑎 − 𝛽1,𝑎 − 𝛽2,𝑎 − 𝛽3,𝑎 − 𝜏0,𝑎 − 𝜏1,𝑎

𝛽0,𝑏 = 𝐹 −1(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑏)
𝛽1,𝑏 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑1 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑏) − 𝛽0,𝑏
𝛽2,𝑏 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑2 + 𝐹(𝛽0,𝑏 + 𝛽1,𝑏)) − 𝛽0,𝑏 − 𝛽1,𝑏
𝛽3,𝑏 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑3 + 𝐹(𝛽0,𝑏 + 𝛽1,𝑏 + 𝛽2,𝑏)) − 𝛽0,𝑏 − 𝛽1,𝑏 − 𝛽2,𝑏
𝛽4,𝑏 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑4 + 𝐹(𝛽0,𝑏 + 𝛽1,𝑏 + 𝛽2,𝑏 + 𝛽3,𝑏)) − 𝛽0,𝑏 − 𝛽1,𝑏 − 𝛽2,𝑏 − 𝛽3,𝑏
𝜏𝑏,0 = 𝐹 −1(𝐴𝑇 𝑇0,𝑏 + 𝐹(𝛽0,𝑏 + 𝛽1,𝑏 + 𝛽2,𝑏 + 𝛽3,𝑏)) − 𝛽0,𝑏 − 𝛽1,𝑏 − 𝛽2,𝑏 − 𝛽3,𝑏
𝜏𝑏,1 = 𝐹 −1(𝐴𝑇 𝑇1,𝑏 + 𝐹(𝛽0,𝑏 + 𝛽1,𝑏 + 𝛽2,𝑏 + 𝛽3,𝑏 + 𝜏𝑏,0)) − 𝛽0,𝑏 − 𝛽1,𝑏 − 𝛽2,𝑏 − 𝛽3,𝑏 − 𝜏𝑏,0

𝛽0,𝑐 = 𝐹 −1(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑐)
𝛽1,𝑐 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑1 + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑐) − 𝛽0,𝑐
𝛽2,𝑐 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑2 + 𝐹(𝛽0,𝑐 + 𝛽1,𝑐)) − 𝛽0,𝑐 − 𝛽1,𝑐
𝛽3,𝑐 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑3 + 𝐹(𝛽0,𝑐 + 𝛽1,𝑐 + 𝛽2,𝑐)) − 𝛽0,𝑐 − 𝛽1,𝑐 − 𝛽2,𝑐
𝛽4,𝑐 = 𝐹 −1(𝑡𝑟𝑒𝑛𝑑4 + 𝐹(𝛽0,𝑐 + 𝛽1,𝑐 + 𝛽2,𝑐 + 𝛽3,𝑐)) − 𝛽0,𝑐 − 𝛽1,𝑐 − 𝛽2,𝑐 − 𝛽3,𝑐

, Where 𝐹() is the CDF of a 𝑁(0, 𝜎2
𝑎 + 𝜎2

𝑢)

11.10 Calculating deforestation rates
Upon choosing an aggregated unit of analysis, the researcher must compute the deforestaion rate. This
varies thoughout the literature, and many authors do not explicitly define the formula used. Different names
are used to describe the calculation of the annual deforestation rate, which generates further confusion
(Puyravaud 2003). We test the performance of three common deforestation rate formulas in the literature.

One common formula to calculate annual deforestation rates is

Outcome 1: = 𝐹𝑖,𝑡−1 − 𝐹𝑖𝑡
𝐹𝑖,𝑡−1

(26)

, where 𝐹𝑖𝑡 and 𝐹𝑖,𝑡−1 are the forest cover at times 𝑡 and 𝑡 − 1, respectively. This calculation is used
consistently in the literature (e.g. Carlson et al. 2018; Busch et al. 2015), and is arguably the most widely
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used formula. Some authors have also calculated the deforestation rate in relation to the initial observed
level of forest cover, replacing 𝐹𝑖𝑡 with 𝐹𝑖0, the baseline forest cover, in equation (1). This gives Outcome 2:

Outcome 2: = 𝐹𝑖0 − 𝐹𝑖𝑡
𝐹𝑖0

(27)

Lastly, we consider a formula derived from the Compound Interest Law that has also been used in recent
studies (e.g. Ruggiero et al. 2019; Puyravaud 2003). Outcome 3 is given by:

Outcome 3: = 𝑙𝑛(𝐹𝑖,𝑡−1/𝐹𝑖𝑡) (28)
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Figure 14: Distribution of estimates produced by different outcome variable formulae

Figure 14 demonstrates that outcome 1 results in the least bias in our guiding example. The other outcomes
result in somewhat larger bias, although the differences between outcomes 1 and 3 is minimal in our setting.
We do raise a concern about the use of outcome 2, especially for studies spanning relatively long time periods.
In later time periods, the outcome variable will steadily increase, even if the true rate of deforestation has
not changed through time. This concern is echoed by the fact that this outcome results in the most biased
estimates of the 𝐴𝑇 𝑇 .

Regardless of authors’ choice of formula, we advise that the formula used should be explicitly stated in a
paper. This will help to avoid confusion as to which formula was used and help researchers understand which
methods are the standard within the literature. Throughout our paper, all specifications using aggregated
data use outcome 1. In our guiding example, it resulted in the least bias and lowest RMSE, and it is currently
the most common deforestation rate calculation used in the literature.
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